[1] Yu T, Lü W*, Zhao Z, et al. Negative drain-induced barrier lowering and negative differential resistance effects in negative-capacitance transistors[J]. Microelectronics Journal, 2021, 108: 104981. (SCI、EI收录).
[2] Zhao Z, Yu T, Si P, Zhang K, Lü W*. Superior performance of a negative- capacitance double-gate junctionless field-effect transistor with additional source-drain doping[J]. Informacije MIDEM, 2020, 50(3): 169-178. (SCI收录).
[3] Zhang K, Lü W*, Si P, et al. Suppression of Timing Variations due to Random Dopant Fluctuation by Back-gate Bias in a Nanometer CMOS Inverter[J]. Recent Advances in Electrical & Electronic Engineering, 2021, 14(3): 339-346. (EI收录).
[4] Liu B, Chen X, Xie Z, Guo M, Zhao M, Lü W*. Reduction of Random Dopant Fluctuation-induced Variation in Junctionless FinFETs via Negative Capacitance Effect[J]. Informacije MIDEM, 2021, 51(4): 253-259. (SCI收录).[5] Guo M, Lü W*, Zhao M, et al. Effect of the Single-and Dual-k Spacers on a Negative-capacitance Fin Field-effect Transistor[J]. Silicon, 2022, 14(16): 10827- 10835. (SCI、EI收录).
[6]Xie Z, Lü W*, Guo M, et al. LoGHeD: an effective approach for negative differential resistance effect suppression in negative-capacitance transistors[J]. Semiconductor Science and Technology, 2022, 37(3): 035001. (SCI、EI收录).
[7] Lü W*, Chen X, Liu B, et al. Comprehensive performance enhancement of a negative-capacitance nanosheet field-effect transistor with a steep sub-threshold swing at the sub-5-nm node[J]. Microelectronics Journal, 2022, 120: 105363. (SCI、EI收录).
[8] Zhao M, Lü W*, Xie Z, et al. Effects of Trapezoidal Fin Shape on Performance of Negative-capacitance FinFETs[J]. Journal of Semiconductor Technology and Science, 2022, 22(5): 283-290. (SCI、EI收录).
[9] Guo M, Lü W, Xie Z, et al. Effects of Symmetric and Asymmetric Double- Layer Spacers on a Negative-Capacitance Nanosheet Field-Effect Transistor[J]. Journal of Nanoelectronics and Optoelectronics, 2022, 17(6): 873-882. (SCI收录).
[10] Han Y, Lü W*, Wei W, et al. Optimization of negative capacitance junctionless gate-all-around field-effect transistor using asymmetric non-local lateral Gaussian doping[J]. Microelectronics Journal, 2023, 135: 105760. (SCI、EI收录).
[11] Lü W*, Zhang C, Chen D, et al. Comparative study on random interface traps-induced reliability of NC-FinFETs and FinFETs[J]. Silicon, 2023, 15(10): 4481-4488. (SCI、EI收录).
[12] Lü W*, Chen D, Zhang C, et al. Random ferroelectric and dielectric phase distribution-induced device variation of negative capacitance field-effect transistors [J]. Results in Physics, 2023, 47: 106388. (SCI收录).
[13] Wei W, Lü W*, Han Y, et al. Design optimization of a silicon-germanium heterojunction negative capacitance gate-all-around tunneling field effect transistor based on a simulation study[J]. Chinese Physics B, 2023, 32(9): 097301. (SCI收录).
[14]Wei W, Lü W*, Han Y, et al. A novel recessed-source negative capacitance gate-all-around tunneling field effect transistor for low-power applications[J]. Microelectronics Journal, 2024, 145: 106126. (SCI、EI收录).
[15] Huo H, Lü W*, Zheng X, et al. Analysis and mitigation of negative differential re-sistance effects with hetero-gate dielectric layer in negative-capacitance field-effect transistors[J]. Informacije MIDEM, 2024, 54(1): 65-73. (SCI收录).
[16] Huo H, Lü W*, Wang Y, et al. Effects of random ferroelectric and dielectric phase distributions on junctionless ferroelectric field effect transistors[J]. Micro and Nanostructures, 2024: 207997.
[17]Lyu W*, Han Y, Zhang C, et al. Estimation of Drain-Induced Barrier Lowering Variation Due to Random Dopant Fluctuation Effect in Nanometer MOSFETs by Gamma Distribution[C]//CECNet. 2023: 215-223. (EI收录).